Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
2.
Methods Mol Biol ; 2452: 147-166, 2022.
Article in English | MEDLINE | ID: covidwho-1844265

ABSTRACT

Droplet digital polymerase chain reaction (ddPCR) is a third generation of PCR that was recently developed to overcome the limitation of direct quantification observed in real-time quantification PCR (qPCR). Recent studies have shown that ddPCR is more sensitive than the gold standard reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) in detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) samples. In combination with multiplexing, multiple RT-ddPCR assays can be developed to directly quantify different SARS-CoV-2 nucleic acid targets within a single sample, significantly saving on cost and time. Since ddPCR is tolerant to a number of inhibitors unlike qPCR, it can be used to detect and quantify samples from complex environments like wastewater. Here we present three one-step RT-ddPCR protocols on how to develop simplex (one target), duplex (two targets), and triplex probe mix (three targets) assays for SARS-CoV-2 detection and quantification. The assays can be used for diagnosis or other research-related SARS-CoV-2 applications.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription , SARS-CoV-2/genetics
4.
Clin Microbiol Rev ; 35(3): e0016821, 2022 09 21.
Article in English | MEDLINE | ID: covidwho-1731254

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global public health disaster. The current gold standard for the diagnosis of infected patients is real-time reverse transcription-quantitative PCR (RT-qPCR). As effective as this method may be, it is subject to false-negative and -positive results, affecting its precision, especially for the detection of low viral loads in samples. In contrast, digital PCR (dPCR), the third generation of PCR, has been shown to be more effective than the gold standard, RT-qPCR, in detecting low viral loads in samples. In this review article, we selected publications to show the broad-spectrum applications of dPCR, including the development of assays and reference standards, environmental monitoring, mutation detection, and clinical diagnosis of SARS-CoV-2, while comparing it analytically to the gold standard, RT-qPCR. In summary, it is evident that the specificity, sensitivity, reproducibility, and detection limits of RT-dPCR are generally unaffected by common factors that may affect RT-qPCR. As this is the first time that dPCR is being tested in an outbreak of such a magnitude, knowledge of its applications will help chart a course for future diagnosis and monitoring of infectious disease outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Pandemics , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
Anal Chem ; 94(10): 4522-4530, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1721381

ABSTRACT

Positive controls made of viral gene components are essential to validate the performance of diagnostic assays for pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, most of them are target-specific, limiting their application spectrum when validating assays beyond their specified targets. The use of an inactivated whole-virus RNA reference standard could be ideal, but RNA is a labile molecule that needs cold chain storage and transportation to preserve its integrity and activity. The cold chain process stretches the already dwindling storage capacities, incurs huge costs, and limits the distribution of reference materials to low-resource settings. To circumvent these issues, we developed an inactivated whole-virus SARS-CoV-2 RNA reference standard and studied its stability in silk fibroin matrices, i.e., silk solution (SS) and silk film (SF). Compared to preservation in nuclease-free water (ddH2O) and SS, SF was more stable and could preserve the SARS-CoV-2 RNA reference standard at room temperature for over 21 weeks (∼6 months) as determined by reverse transcription polymerase chain reaction (RT-PCR). The preserved RNA reference standard in SF was able to assess the limits of detection of four commercial SARS-CoV-2 RT-PCR assays. In addition, SF is compatible with RT-PCR reactions and can be used to preserve a reaction-ready primer and probe mix for RT-PCR at ambient temperatures without affecting their activity. Taken together, these results offer extensive flexibility and a simpler mechanism of preserving RNA reference materials for a long time at ambient temperatures of ≥25 °C, with the possibility of eliminating cold chains during storage and transportation.


Subject(s)
COVID-19 , RNA, Viral , COVID-19/diagnosis , Humans , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity , Silk
6.
J Biosaf Biosecur ; 2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1506533

ABSTRACT

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 (COVID-19) pandemic has crippled several countries across the globe posing a serious global public health challenge. Despite the massive rollout of vaccines, molecular diagnosis remains the most important method for timely isolation, diagnosis, and control of COVID-19. Several molecular diagnostic tools have been developed since the beginning of the pandemic with some even gaining emergency use authorization (EUA) from the United States (US) Food and Drug Administration (FDA) for in vitro diagnosis of SARS-CoV-2. Herein, we discuss the working principles of some commonly used molecular diagnostic tools for SARS-CoV-2 including nucleic acid amplification tests (NAATs), isothermal amplification tests (IATs), and rapid diagnostic tests (RDTs). To ensure successful detection while minimizing the risk of cross-infection and misdiagnosis when using these diagnostic tools, laboratories should adhere to proper biosafety practices. Hence, we also present the common biosafety practices that may ensure the successful detection of SARS-CoV-2 from specimens while protecting laboratory workers and non-suspecting individuals from being infected. From this review article, it is clear that the SARS-CoV-2 pandemic has led to an increase in molecular diagnostic tools and the formation of new biosafety protocols that may be important for future and ongoing outbreaks.

7.
Sci Total Environ ; 797: 149085, 2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1313422

ABSTRACT

The ongoing COVID-19 pandemic has generated a global health crisis that needs well management of not only patients but also environments to reduce SARS-CoV-2 transmission. The gold standard RT-qPCR method is sensitive and rapid to detect SARS-CoV-2 nucleic acid, but does not answer if PCR-positive samples contain infectious virions. To circumvent this problem, we report an SDS-propidium monoazide (PMA) assisted RT-qPCR method that enables rapid discrimination of live and dead SARS-CoV-2 within 3 h. PMA, a photo-reactive dye, can react with viral RNA released or inside inactivated SARS-CoV-2 virions under assistance of 0.005% SDS, but not viral RNA inside live virions. Formation of PMA-RNA conjugates prevents PCR amplification, leaving only infectious virions to be detected. Under optimum conditions, RT-qPCR detection of heat-inactivated SARS-CoV-2 resulted in larger than 9 Ct value differences between PMA-treated and PMA-free groups, while less than 0.5 Ct differences were observed in the detection of infectious SARS-CoV-2 ranging from 20 to 5148 viral particles. Using a cutoff Ct difference of 8.6, this method could differentiate as low as 8 PFU live viruses in the mixtures of live and heat-inactivated virions. Further experiments showed that this method could successfully monitor the natural inactivation process of SARS-CoV-2 on plastic surfaces during storage with comparable results to the gold standard plaque assay. We believe that the culture-free method established here could be used for rapid and convenient determination of infectious SARS-CoV-2 virions in PCR-positive samples, which will facilitate better control of SARS-CoV-2 transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Azides , Humans , Pandemics , Propidium/analogs & derivatives , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
8.
J Environ Sci (China) ; 112: 115-120, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1230607

ABSTRACT

Wastewater-based epidemiology (WBE) has emerged as an effective environmental surveillance tool in monitoring fecal-oral pathogen infections within a community. Congruently, SARS-CoV-2, the etiologic agent of COVID-19, has been demonstrated to infect the gastrointestinal tissues, and be shed in feces. In the present study, SARS-CoV-2 RNA was concentrated from wastewater, sludge, surface water, ground water, sediment, and soil samples of municipal and hospital wastewater systems and related environments in Wuhan during the COVID-19 middle and low risk periods, and the viral RNA copies quantified using reverse transcription quantitative polymerase chain reaction (RT-qPCR). From the findings of this study, during the middle risk period, one influent sample and three secondary effluents collected from waste water treatment plant 2, as well as two samples from Jinyintan Hospital wastewater system influent were SARS-CoV-2 RNA positive. One sludge sample collected from Guanggu Branch of Tongji Hospital, which was obtained during the low risk period, was also positive for SARS-CoV-2 RNA. These study findings demonstrate the significance of WBE in continuous surveillance of SARS-CoV-2 at the community level, even when the COVID-19 prevalence is low. Overall, this study can be used as an important reference for contingency management of wastewater treatment plants and COVID-19 prevention and control departments of Wuhan.


Subject(s)
COVID-19 , Wastewater , Environmental Monitoring , Humans , RNA, Viral , SARS-CoV-2
9.
J Vis Exp ; (169)2021 03 31.
Article in English | MEDLINE | ID: covidwho-1192273

ABSTRACT

Diagnosis of the ongoing SARS-CoV-2 pandemic is a priority for all countries across the globe. Currently, reverse transcription quantitative PCR (RT-qPCR) is the gold standard for SARS-CoV-2 diagnosis as no permanent solution is available. However effective this technique may be, research has emerged showing its limitations in detection and diagnosis especially when it comes to low abundant targets. In contrast, droplet digital PCR (ddPCR), a recent emerging technology with superior advantages over qPCR, has been shown to overcome the challenges of RT-qPCR in diagnosis of SARS-CoV-2 from low abundant target samples. Prospectively, in this article, the capabilities of RT-ddPCR are further expanded by showing steps on how to develop simplex, duplex, triplex probe mix, and quadruplex assays using a two-color detection system. Using primers and probes targeting specific sites of the SARS-CoV-2 genome (N, ORF1ab, RPP30, and RBD2), the development of these assays is shown to be possible. Additionally, step by step detailed protocols, notes, and suggestions on how to improve the assays workflow and analyze data are provided. Adapting this workflow in future works will ensure that the maximum number of targets can be sensitively detected in a small sample significantly improving on cost and sample throughput.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , DNA Primers , Humans , Pandemics , RNA, Viral/genetics , Reverse Transcription , Sensitivity and Specificity
10.
Expert Rev Mol Diagn ; 21(1): 119-129, 2021 01.
Article in English | MEDLINE | ID: covidwho-1003446

ABSTRACT

Introduction: With the ongoing SARS-CoV-2 pandemic, different articles have been published highlighting the superiority of droplet digital PCR (ddPCR) over the gold-standard reverse transcription PCR (RT-PCR) in SARS-CoV-2 detection. However, few studies have been reported on developing multiplex ddPCR assays for SARS-CoV-2 detection and their performance. This study shows steps on how to develop different ddPCR SAR-CoV-2 assays including higher order multiplex assays for SARS-CoV-2 detection and antiviral screening.Methods: Using multiple primer/probe sets, we developed, optimized, and analyzed the performance of simplex (1 target), duplex (2 targets), triplex probe mix (3 targets), and quadruplex (4 targets) SARS-CoV-2 ddPCR assays based on a two-color ddPCR detection system.Results: Results showed that the quadruplex assay had similar limits of detection and accuracy to the lower multiplex assays. Analyzing 94 clinical samples demonstrated that the ddPCR triplex probe mix assay had better sensitivity than the RT-qPCR assay. Additionally, the ddPCR multiplex assay showed that remdesivir could inhibit the growth of SARS-CoV-2 in vitro while another testing drug could not.Conclusion: Our research shows that developing multiplex ddPCR assays is possible by combing probe mix and amplitude-based multiplexing, which will help in developing multiplexed ddPCR assays for different SARS-CoV-2 applications.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Multiplex Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Antiviral Agents/pharmacology , DNA Primers/genetics , False Positive Reactions , Humans , Limit of Detection , Pandemics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Sensitivity and Specificity , Temperature , Viral Load/methods
SELECTION OF CITATIONS
SEARCH DETAIL